4.8 Review

Triboelectric nanogenerators as self-powered active sensors

期刊

NANO ENERGY
卷 11, 期 -, 页码 436-462

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2014.10.034

关键词

Triboelectric nanogenerators; Contact electrification; Mechanical energy harvesting; Wireless sensor networks; Self-powered systems; Self-powered active sensors

资金

  1. BES DOE [DE-FG02-07ER46394]
  2. NSF
  3. Airforce
  4. Samsung
  5. SKKU (Korea)
  6. MANA NIMS (Japan)
  7. Knowledge Innovation Program of the Chinese Academy of Sciences [KJCX2-YW-M13]
  8. Hightower Chair Foundation
  9. thousands talents program for pioneer researcher and his innovation team, China

向作者/读者索取更多资源

The development of internet of things and the related sensor technology have been a key driving force for the rapid development of industry and information technology. The requirement of wireless, sustainable and independent operation is becoming increasingly important for sensor networks that currently could include thousands even to millions of sensor nodes with different functionalities. For these purposes, developing technologies of self-powered sensors that can utilize the ambient environmental energy to drive the operation themselves is highly desirable and mandatory. The realization of self-powered sensors generally has two approaches: the first approach is to develop environmental energy harvesting devices for, driving the traditional sensors; the other is to develop a new category of sensors - self-powered active sensors - that can actively generate electrical signal itself as a response to a stimulation/triggering from the ambient environment. The recent invention and intensive development of triboelectric nanogenerators (TENGs) as a new technology for mechanical energy harvesting can be utilized as self-powered active mechanical sensors, because the parameters (magnitude, frequency, number of periods, etc.) of the generated electrical signal are directly determined by input mechanical behaviors. In this review paper, we first briefly introduce the fundamentals of TENGs, including the four basic working modes. Then, the most updated progress of developing TENGs as self-powered active sensors is reviewed. TENGs with different working modes and rationally designed structures have been developed as self-powered active sensors for a variety of mechanical motions, including pressure change, physical touching, vibrations, acoustic waves, linear displacement, rotation, tracking of moving objects, and acceleration detection. Through combining the open-circuit voltage and the short-circuit current, the detection of both static and dynamic processes has been enabled. The integration of individual sensor elements into arrays or matrixes helps to realize the mapping or parallel detection for multiple points. On the other hand, the relationship between the amplitude of TENG-generated electrical signal and the chemical state of its triboelectric surface enables TENGs to function as self-powered active chemical sensors. Through continuous research on the TENG-based self-powered active sensors in the coming years to further improve the sensitivity and realize the self-powered operation for the entire sensor node systems, they will soon have broad applications in touch screens, electronic skins, healthcare, environmental/infrastructure monitoring, national security, and more. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据