4.5 Article

EFFECT OF THE THROUGH-THE-THICKNESS TEMPERATURE DISTRIBUTION ON THE RESPONSE OF LAYERED AND COMPOSITE SHELLS

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S1758825109000393

关键词

Composite shells; Fourier's heat conduction equation; refined two-dimensional models; Carrera's unified formulation

向作者/读者索取更多资源

This paper considers the thermal stress problem of thick and thin multilayered cylindrical and spherical shells including carbon fiber reinforced layers and/or a central soft core. The following two cases are considered: (i) the temperature distribution in thickness direction is assumed linear; (ii) the temperature distribution in thickness direction is calculated via Fourier's heat conduction equation. Carrera's Unified Formulation and the Principle of Virtual Displacements are used to obtain the governing equations in the case of shells with constant radii of curvature subjected to established temperature conditions on their upper and lower surfaces. Both Equivalent Single Layer and Layer Wise models with an order of expansion in the thickness direction from linear to fourth order are considered. The importance of refined models for a correct evaluation of displacement and stress fields in multilayered shells can be noted. Furthermore, it has been shown that results obtained assuming a linear temperature profile in the thickness direction can be meaningless.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据