4.8 Article

Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating

期刊

NANO ENERGY
卷 14, 期 -, 页码 392-400

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2014.09.005

关键词

Photoelectrochemical; Water splitting; ZnO; ZnIn2S4; Graphene

资金

  1. National Major Research Program of China [2013CB932602]
  2. Major Project of International Cooperation and Exchanges [2012DFA50990]
  3. Program of Introducing Talents of Discipline to Universities
  4. NSFC [51232001, 51172022, 51372023, 51372020]
  5. Research Fund of Co-construction Program from Beijing Municipal Commission of Education
  6. Fundamental Research Funds for the Central Universities
  7. Program for Changjiang Scholars and Innovative Research Team in University

向作者/读者索取更多资源

Developing photoanodes with high light-harvesting efficiency and great electronic transmission capacity remains a key challenge in photoelectrochemical (PEC) water splitting. In this paper, we reported an effective approach to enhance the PEC performance of ZnO nanowire arrays (NAs) photoanodes via overcoating ZnIn2S4 nanosheets onto the ZnO surfaces. The ZnIn2S4 electrocatalyst nanosheets were grown on the reduced graphene oxide (RGO) substrates by solvothermal synthesis and then grafted onto ZnO NAs, forming ZnO NAs/RGO/ZnIn2S4 heterojunctions. The ZnIn2S4 shells acted as visible light sensitizers, and the type-II band alignment between the ZnIn2S4 shells and the ZnO cores contributed to charge separation and transport. Meanwhile, the introduction of RGO nanosheets largely increased the surface area and accelerated the PEC process by reducing the energy barrier of interfacial electrochemical reaction. As a result, over 200% enhancement of photo-to-hydrogen conversion efficiency was achieved from the ZnO NAs/RGO/ZnIn2S4 heterojunctions compared to bare ZnO NAs. The results demonstrate that the RGO-based core/shell heterojunction arrays can provide a facile and compatible configuration for the potential applications in solar water splitting. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据