4.5 Article

Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

期刊

FRONTIERS IN NEUROANATOMY
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnana.2014.00013

关键词

cerebral cortex; basal ganglia; arousal; atropine; 6-hydroxydopamine; c-Fos; rat

资金

  1. NIH [NS06184, NS062727]
  2. National Natural Science Foundation of China [31171049, 31121061, 31271164]
  3. Shanghai Committee of Science and Technology [11ZR1401800, 13140903100, 13dz2260700]
  4. SRF for ROCS, SEM
  5. National Basic Research Program of China [2011CB711000, 2009ZX09303-006]
  6. Shanghai Leading Academic Discipline Project [B119]

向作者/读者索取更多资源

The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson's disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [V-methyl-D-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPI, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据