4.2 Article

Re-assessment of mitigation strategies for deliberate releases of anthrax using a real-time outbreak characterization tool

期刊

EPIDEMICS
卷 2, 期 4, 页码 189-194

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epidem.2010.06.001

关键词

Bacillus anthracis; Bioterrorism; Computer simulation; Disease outbreaks; Statistical models; Public health practice

资金

  1. Department of Health for England (Health Protection Agency) [104307, 104308]
  2. Home Office Counter Terrorism and Intelligence Directorate [17/05/70]
  3. Medical Research Council for Centre
  4. Medical Research Council [G0600719B] Funding Source: researchfish

向作者/读者索取更多资源

Responding rapidly and appropriately to a covert anthrax release is an important public health challenge. A methodology to assist the geographical targeting of such a response has recently been published; as have a number of independent studies that investigate mitigation strategies. Here, we review and combine some of these published techniques to more realistically assess how key aspects of the public health response might impact on the outcomes of a bioterrorist attack. We combine a within-host mathematical model with our spatial back-calculation method to investigate the effects of a number of important response variables. These include how previously reported levels of adherence with taking antibiotics might affect the total outbreak size compared to assuming full adherence. Post-exposure vaccination is also considered, both with and without the use of antibiotics. Further, we investigate a range of delays (2, 4 and 8 days) before interventions are implemented, following the last day of symptomatic onset of some number of observed initial cases (5, 10 and 15). Our analysis confirms that outbreak size is minimised by implementing prophylactic treatment after having estimated the exposed area based on 5 observed cases; however, imperfect (rather than full) adherence with antibiotics results in approximately 15% additional cases. Moreover, of those infected individuals who only partially adhere with a prophylactic course of antibiotics, 86% remain disease free; a result that holds for scenarios in which infected individuals inhale much higher doses than considered here. Increasing logistical delays have a particularly detrimental effect on lives saved with an optimal strategy of early identification and analysis. Our analysis shows that it is critical to have systems and processes in place to rapidly identify, geospatially analyse and then swiftly respond to a deliberate anthrax release. (C) 2010 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据