4.3 Article

Foraging behavior minimizes heat exposure in a complex thermal landscape

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 518, 期 -, 页码 165-175

出版社

INTER-RESEARCH
DOI: 10.3354/meps11053

关键词

Thermoregulation; Intertidal ecology; Climate change; Tidal cycle; Predation; Nucella; Whelk

资金

  1. NSF [OCE0824903]
  2. Seattle ARCS Foundation
  3. Pacific Northwest Shell Club
  4. Ragen Fellowship
  5. Strathmann Fellowship
  6. University of Washington Department of Biology
  7. Friday Harbor Laboratories

向作者/读者索取更多资源

Ectotherms use specialized behavior to balance amelioration of environmental temperature stress against the need to forage. The intertidal snail Nucella ostrina risks aerial exposure at low tide to feed on the barnacle Balanus glandula. We hypothesized that N. ostrina foraging behavior would be constrained by duration and timing of low tide exposure. We added snails to intertidal blocks on San Juan Island, Washington, USA, and forced them to choose between barnacles placed on the western or eastern face of each block, or to shelter and forgo foraging. Snail behavior and barnacle mortality were monitored daily for 8 wk during summer 2011. N. ostrina foraging peaked every 2 wk, when temperature was minimized by tidal cycling. Low tide timing determined which substrate orientation was coolest and coincided with the proportion of snails foraging on one substrate face or the other: snails foraged on the western faces on days with morning low tides and on eastern faces on days with afternoon low tides. Barnacle consumption rates mirrored this spatiotemporal foraging pattern. Our conceptual model predicted mobile organism presence and location: snails foraged during the days of the tidal cycle least likely to be hot and selected the coolest available surface when foraging. These results suggest that N. ostrina alters foraging behavior to minimize risk of exposure to high temperatures or other emersion stresses. Consequently, predation on barnacles varies over space and time. This spatiotemporal behavior may buffer warming air temperatures and should be considered in models of coastal population and community dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据