4.3 Article

Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 533, 期 -, 页码 149-161

出版社

INTER-RESEARCH
DOI: 10.3354/meps11365

关键词

Phenotypic plasticity; Symbiodinium; Symbiosis; Acclimatization; Coral reef; Red Sea; Pocillopora verrucosa; Porites lutea

资金

  1. King Abdullah University of Science and Technology (KAUST)
  2. Hesse's Ministry of Higher Education, Research, and the Arts
  3. DAAD postgraduate travel grant

向作者/读者索取更多资源

Knowledge of host-symbiont specificity and acclimatization capacity of corals is crucial for understanding implications of environmental change. Whilst some corals have been shown to associate with a number of symbionts that may comprise different physiologies, most corals associate with only one dominant Symbiodinium species at a time. Coral communities in the Red Sea thrive under large fluctuations of environmental conditions, but the degree and mechanisms of coral acclimatization are largely unexplored. Here we investigated the potential for niche acclimatization in 2 dominant corals from the central Red Sea, Pocillopora verrucosa and Porites lutea, in relation to the fidelity of the underlying coral-symbiont association. Repeated sampling over 2 seasons along a cross-shelf and depth gradient revealed a stable symbiont association in P. verrucosa and flexible association in P. lutea. A statistical biological-environmental matching routine revealed that the high plasticity of photophysiology and photopigments in the stable Symbiodinium microadriaticum (type A1) community in P. verrucosa were correlated with environmental influences along spatio-temporal dimensions. In contrast, photophysiology and pigments were less variable within each symbiont type from P. lutea indicating that niche acclimatization was rather regulated by a flexible association with a variable Symbiodinium community. Based on these data, we advocate an extended concept of phenotypic plasticity of the coral holobiont, in which the scleractinian host either associates with a specific Symbiodinium type with a broad physiological tolerance, or the host-symbiont pairing is more flexible to accommodate for different symbiont associations, each adapted to specific environmental settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据