4.8 Article

Multi-photon quantum cutting in Gd2O2S:Tm3+ to enhance the photo-response of solar cells

期刊

LIGHT-SCIENCE & APPLICATIONS
卷 4, 期 -, 页码 -

出版社

CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS
DOI: 10.1038/lsa.2015.117

关键词

downconversion; infrared emission; quantum cutting; solar cells; spectral conversions

类别

资金

  1. National Science Foundation of China [51125005, 51472088]
  2. China Scholarship Council (CSC) [201206150022]
  3. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

向作者/读者索取更多资源

Conventional photoluminescence (PL) yields at most one emitted photon for each absorption event. Downconversion (or quantum cutting) materials can yield more than one photon by virtue of energy transfer processes between luminescent centers. In this work, we introduce Gd2O2S:Tm3+ as a multi-photon quantum cutter. It can convert near-infrared, visible, or ultraviolet photons into two, three, or four infrared photons of similar to 1800 nm, respectively. The cross-relaxation steps between Tm3+ ions that lead to quantum cutting are identified from (time-resolved) PL as a function of the Tm3+ concentration in the crystal. A model is presented that reproduces the way in which the Tm3+ concentration affects both the relative intensities of the various emission lines and the excited state dynamics and providing insight in the quantum cutting efficiency. Finally, we discuss the potential application of Gd2O2S: Tm3+ for spectral conversion to improve the efficiency of next-generation photovoltaics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据