3.8 Article

The Wave Complex is Intrinsically Inactive

期刊

CELL MOTILITY AND THE CYTOSKELETON
卷 66, 期 10, 页码 777-790

出版社

WILEY-LISS
DOI: 10.1002/cm.20342

关键词

Arp2/3 complex; actin; multiprotein complex; stable cell line; cell migration

向作者/读者索取更多资源

The Wave proteins activate the Arp2/3 complex at the leading edge of migrating cells. The resulting actin polymerization powers the projection of the plasma membrane in lamellipodia and membrane ruffles. The Wave proteins are always found associated with partner proteins. The canonical Wave complex is a stable complex containing five subunits. Even though it is well admitted that this complex plays all essential regulatory role on Wave function, the mechanisms by which Wave proteins are regulated within the complex are still elusive. Even the constitutive activity or inactivity of the complex is controversial. The major difficulty of these assays resides in the long and difficult purification of the Wave complex by a combination of several chromatography steps, which gives an overall low yield and increases the chance of Wave complex denaturation. Here we report a greatly simplified approach to purify the human Wave complex using a stable cell line expressing a tagged subunit and affinity chromatography. This protocol provided us with sufficient amount Of pure Wave complex for functional assays. These assays unambiguously established that the Wave complex in its native conformation is intrinsically inactive, indicating that, like WASP proteins, Wave proteins have a masked C-terminal Arp2/3 binding site at resting state. As a consequence, the Wave complex has to be recruited and activated at the plasma membrane to project migration structures. Importantly, the approach we describe here for multiprotein complex purification is likely applicable to a wide range of human multiprotein complexes. Cell Motil. Cytoskeleton 66: 777-790, 2009. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据