4.1 Article

S100A4 downregulates filopodia formation through increased dynamic instability

期刊

CELL ADHESION & MIGRATION
卷 5, 期 5, 页码 439-447

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/cam.5.5.17773

关键词

filopodia; S100A4; cell migration; focal adhesion; cancer progression; myosin IIA

资金

  1. ARCHA at Aston University
  2. Aston University

向作者/读者索取更多资源

Cell migration requires the initial formation of cell protrusions, lamellipodia and/or filopodia, the attachment of the leading lamella to extracellular cues and the formation and efficient recycling of focal contacts at the leading edge. The small calcium binding EF-hand protein S100A4 has been shown to promote cell motility but the direct molecular mechanisms responsible remain to be elucidated. In this work, we provide new evidences indicating that elevated levels of S100A4 affect the stability of filopodia and prevent the maturation of focal complexes. Increasing the levels of S100A4 in a rat mammary benign tumor derived cell line results in acquired cellular migration on the wound healing scratch assay. At the cellular levels, we found that high levels of S100A4 induce the formation of many nascent filopodia, but that only a very small and limited number of those can stably adhere and mature, as opposed to control cells, which generate fewer protrusions but are able to maintain these into more mature projections. This observation was paralleled by the fact that S100A4 overexpressing cells were unable to establish stable focal adhesions. Using different truncated forms of the S100A4 proteins that are unable to bind to myosin II A, our data suggests that this newly identified functions of S100A4 is myosin-dependent, providing new understanding on the regulatory functions of S100A4 on cellular migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据