4.6 Review

Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment

期刊

CATALYSIS SCIENCE & TECHNOLOGY
卷 2, 期 9, 页码 1787-1801

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cy00487a

关键词

-

资金

  1. FP7 Fuel Cells and Hydrogen Joint Undertaking program, under ROBANODE project
  2. FP7 Fuel Cells and Hydrogen Joint Undertaking program, under IRAFC project
  3. FP7 Fuel Cells and Hydrogen Joint Undertaking program, under DEMMEA project

向作者/读者索取更多资源

Alloys play a crucial role in several heterogeneous catalytic processes, and their applications are expected to rise rapidly. This is essentially related to the vast number of configurations and type of surface sites that multi-component materials can afford. It is well established that the chemical composition at the surface of an alloy usually differs from that in the bulk. This phenomenon, referred to as surface segregation, is largely controlled by the surface free energy. However, surface energy alone cannot safely predict the active surface state of a solid catalyst, since the contribution of other parameters such as size and support effects, as well as influence of the adsorbates, play a major role. This can lead to numerous surface configurations as for example over the length of a catalytic reactor, as the chemical potential of the gas phase changes continuously over the catalyst bed and hence different reactions may prevail at different catalyst bed segments. Thanks to the rapid improvement of the analytical surface science characterization techniques and theoretical methodologies, the potential effects induced by alloyed catalysts are better understood. For catalysis, the relevance of measurements performed on well-defined surfaces under idealized ultrahigh vacuum conditions has been questioned and studies in environments that closely resemble conditions of working alloy catalysts are needed. In this review we focus on experimental and theoretical studies related to in situ (operando) observations of surface segregation and phase separation phenomena taking place on the outermost surface layers of alloy catalysts. The combination of first principles theoretical treatment and in situ observation opens up new perspectives of designing alloy catalysts with tailored properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据