4.6 Article

Foam, fleece and honeycomb: catalytically active coatings from colloidally prepared nanoparticles

期刊

CATALYSIS SCIENCE & TECHNOLOGY
卷 1, 期 5, 页码 830-838

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cy00077b

关键词

-

向作者/读者索取更多资源

Although monolithic catalysts offer distinct advantages such as low pressure drops and easy catalyst separation compared to tube bundle reactors filled with pellets and are for instance widely used for automobile exhaust treatment, the coating of the monolithic structures with the catalytically active phase is often complex and recipes need to be established empirically. In contrast to traditional methods, such as dip-coating or impregnation of the monolith, where the active nanoparticles are formed during the preparation on an oxidic washcoat usually used and deposited simultaneously or in a previous step, we demonstrate in this study that alternatively preformed colloidally synthesized nanoparticles can be employed to obtain homogeneous coatings with or without a washcoat. In this way, one can take advantage of the far-reaching possibilities of colloidal methods to control the structure and size of the nanoparticles and also to tune and optimize their binding to the monolithic surface. For cases where beneficial metal-support interactions between the nanoparticles and a washcoat improve the catalytic properties we demonstrate that colloidally prepared nanoparticles can be directly mixed with a washcoat slurry and successfully deposited on monolithic supports. Turnover frequencies comparable to the corresponding powder catalysts could be reached. In a second approach, we present here a facile method to directly coat three different monolithic supports (cordierite honeycomb, Al2O3 foam and Nickel fleece) with preformed Pt nanoparticles in the presence and absence of organic ligands. In order to realize high metal loadings, the beneficial influence of a ligand double-layer'' (coating of nanoparticles and the support by organic ligands) enhancing the adhesion between the Pt nanoparticles and the underlying monolithic support will be discussed. In the case of the metallic Ni substrate, this approach furthermore allows to circumvent alloy formation and nanoparticle diffusion into the metallic substrate. This can greatly increase long-term stability of systems coated directly onto metallic substrates without an additional oxidic washcoat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据