3.9 Article

Modeling of loops in proteins: a multi-method approach

期刊

BMC STRUCTURAL BIOLOGY
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1472-6807-10-5

关键词

-

资金

  1. NIH [1R01GM081680]
  2. Polish Ministry of Science and Higher Education [NN301465634]
  3. EU European Regional Development Fund

向作者/读者索取更多资源

Background: Template-target sequence alignment and loop modeling are key components of protein comparative modeling. Short loops can be predicted with high accuracy using structural fragments from other, not necessairly homologous proteins, or by various minimization methods. For longer loops multiscale approaches employing coarse-grained de novo modeling techniques should be more effective. Results: For a representative set of protein structures of various structural classes test predictions of loop regions have been performed using MODELLER, ROSETTA, and a CABS coarse-grained de novo modeling tool. Loops of various length, from 4 to 25 residues, were modeled assuming an ideal target-template alignment of the remaining portions of the protein. It has been shown that classical modeling with MODELLER is usually better for short loops, while coarse-grained de novo modeling is more effective for longer loops. Even very long missing fragments in protein structures could be effectively modeled. Resolution of such models is usually on the level 2-6 angstrom, which could be sufficient for guiding protein engineering. Further improvement of modeling accuracy could be achieved by the combination of different methods. In particular, we used 10 top ranked models from sets of 500 models generated by MODELLER as multiple templates for CABS modeling. On average, the resulting molecular models were better than the models from individual methods. Conclusions: Accuracy of protein modeling, as demonstrated for the problem of loop modeling, could be improved by the combinations of different modeling techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据