4.4 Article

Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction

期刊

BEILSTEIN JOURNAL OF NANOTECHNOLOGY
卷 5, 期 -, 页码 801-811

出版社

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.5.92

关键词

eosin Y sensitization; graphene oxide; H-2 evolution; photocatalysis; photoreduction; sp(2) conjugated domains

资金

  1. National Nature Science Foundation of China [20763006]
  2. National Basic Research Program of China [2009CB220003]

向作者/读者索取更多资源

A graphene oxide (GO) solution was irradiated by a Xenon lamp to form reduced graphene oxide (RGO). After irradiation, the epoxy, the carbonyl and the hydroxy groups are gradually removed from GO, resulting in an increase of sp(2) pi-conjugated domains and defect carbons with holes for the formed RGO. The RGO conductivity increases due to the restoration of sp(2) pi-conjugated domains. The photocatalytic activity of EY-RGO/Pt for hydrogen evolution was investigated with eosin Y (EY) as a sensitizer of the RGO and Pt as a co-catalyst. When the irradiation time is increased from 0 to 24 h the activity rises, and then reaches a plateau. Under optimum conditions (pH 10.0, 5.0 x 10(-4) mol L-1 EY, 10 mu g mL(-1) RGO), the maximal apparent quantum yield (AQY) of EY-RGO24/Pt for hydrogen evolution rises up to 12.9% under visible light irradiation (lambda >= 420 nm), and 23.4% under monochromatic light irradiation at 520 nm. Fluorescence spectra and transient absorption decay spectra of the EY-sensitized RGO confirm that the electron transfer ability of RGO increases with increasing irradiation time. The adsorption quantity of EY on the surface of RGO enhances, too. The two factors ultimately result in an enhancement of the photocatalytic hydrogen evolution over EY-RGO/Pt with increasing irradiation time. A possible mechanism is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据