4.4 Article

A facile approach to nanoarchitectured three-dimensional graphene-based Li-Mn-O composite as high-power cathodes for Li-ion batteries

期刊

BEILSTEIN JOURNAL OF NANOTECHNOLOGY
卷 3, 期 -, 页码 513-523

出版社

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.3.59

关键词

cathode; graphene; Li-ion battery; lithium manganate

向作者/读者索取更多资源

We report a facile method to prepare a nanoarchitectured lithium manganate/graphene (LMO/G) hybrid as a positive electrode for Li-ion batteries. The Mn2O3/graphene hybrid is synthesized by exfoliation of graphene sheets and deposition of Mn2O3 in a one-step electrochemical process, which is followed by lithiation in a molten salt reaction. There are several advantages of using the LMO/G as cathodes in Li-ion batteries: (1) the LMO/G electrode shows high specific capacities at high gravimetric current densities with excellent cycling stability, e. g., 84 mAh.g(-1) during the 500th cycle at a discharge current density of 5625 mA.g(-1) (similar to 38.01 C capacity rating) in the voltage window of 3-4.5 V; (2) the LMO/G hybrid can buffer the Jahn-Teller effect, which depicts excellent Li storage properties at high current densities within a wider voltage window of 2-4.5 V, e. g., 93 mAh.g(-1) during the 300th cycle at a discharge current density of 5625 mA.g(-1) (similar to 38.01 C). The wider operation voltage window can lead to increased theoretical capacity, e. g., 148 mAh.g(-1) between 3 and 4.5 V and 296 mAh.g(-1) between 2 and 4.5 V; (3) more importantly, it is found that the attachment of LMO onto graphene can help to reduce the dissolution of Mn2+ into the electrolyte, as indicated by the inductively coupled plasma (ICP) measurements, and which is mainly attributed to the large specific surface area of the graphene sheets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据