4.8 Article

Low-Temperature Processable High-Performance D-A-Type Random Copolymers for Nonfullerene Polymer Solar Cells and Application to Flexible Devices

期刊

ADVANCED ENERGY MATERIALS
卷 8, 期 30, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201801601

关键词

morphology; nonfullerene acceptors; polymer solar cells; power conversion efficiency; random copolymers

资金

  1. Global Frontier RAMP
  2. D Program on Center for Multiscale Energy System [2015R1A1A1A05001115]
  3. KIST
  4. Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Ministry of Knowledge Economy (MKE) [20163030013620]

向作者/读者索取更多资源

Donor-acceptor random copolymers incorporating 1,3-bis(thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c]dithiophene-4,8-dione (BDD) and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b]dithiophene (BDT-Th) are developed. Nonfullerene solar cells introducing the random copolymer PBDB-T73 (BDT-Th:BDD=7:3) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2,3-d]-s-indaceno[1,2-b:5,6-b]dithiophene are found to exhibit efficiency of 11.14%, which is superior to that of the PBDB-T alternating copolymer (10.02%). The PBDB-T73 device exhibits high performance due to low bimolecular charge recombination and good charge transport balance even though none of the treatments that are usually necessary for improving crystalline properties of active layers are performed; in contrast, the PBDB-T device requires thermal annealing in order to enhance the polymer's crystallinity and obtain improved fill factor and J(sc) values. It is demonstrated that efficient charge transport occurs in the PBDB-T73 blend despite relatively low crystallinity of the polymer. The percolating network structure of the large mixed phase in the PBDB-T73 blend has an important role in its efficient charge transport. Moreover, due to the low-temperature processability of PBDB-T73, flexible PBDB-T73 solar cell devices prepared on polyethylene terephthalate (PET) substrates exhibit high photovoltaic performance, 10.02%, whereas the efficiency of PBDB-T-based flexible devices (7.2%) is significantly lower due to damage to the active layer on indium tin oxide (ITO)/PET that results from thermal annealing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据