4.8 Article

Hierarchically Porous M-N-C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance

期刊

ADVANCED ENERGY MATERIALS
卷 8, 期 29, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201801956

关键词

M-N-C catalysts; nonprecious metal catalysts; oxygen reduction reaction; porous nanostructures; single-atom catalysts

资金

  1. Washington State University, USA
  2. U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]
  3. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

The great interest in fuel cells inspires a substantial amount of research on nonprecious metal catalysts as alternatives to Pt-based oxygen reduction reaction (ORR) electrocatalysts. In this work, bimodal template-based synthesis strategies are proposed for the scalable preparation of hierarchically porous M-N-C (M = Fe or Co) single-atom electrocatalysts featured with active and robust MN2 active moieties. Multiscale tuning of M-N-C catalysts regarding increasing the number of active sites and boosting the intrinsic activity of each active site is realized simultaneously at a single-atom scale. In addition to the antipoisoning power and high affinity for O-2, the optimized Fe-N-C catalysts with FeN2 active site presents a superior electrocatalytic activity for ORR with a half-wave potential of 0.927 V (vs reversible hydrogen electrode (RHE)) in an alkaline medium, which is 49 and 55 mV higher than those of the Co-N-C counterpart and commercial Pt/C, respectively. Density functional theory calculations reveal that the FeN2 site is more active than the CoN2 site for ORR due to the lower energy barriers of the intermediates and products involved. The present work may help rational design of more robust ORR electrocatalysts at the atomic level, realizing the significant advances in electrochemical conversion and storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据