4.8 Article

Towards High-Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species

期刊

ADVANCED ENERGY MATERIALS
卷 5, 期 1, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201400678

关键词

-

资金

  1. U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) [57558]
  2. Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL)
  3. U.S. Department of Energy, Office of Science, Basic Energy Sciences
  4. DOE's Office of Biological and Environmental Research [DE-AC05-76RL01830]

向作者/读者索取更多资源

Nonaqueous redox flow batteries are emerging flow-based energy storage technologies that have the potential for higher energy densities than their aqueous counterparts because of their wider voltage windows. However, their performance has lagged far behind their inherent capability due to one major limitation of low solubility of the redox species. Here, a molecular structure engineering strategy towards high performance nonaqueous electrolyte is reported with significantly increased solubility. Its performance outweighs that of the state-of-the-art nonaqueous redox flow batteries. In particular, an ionic-derivatized ferrocene compound is designed and synthesized that has more than 20 times increased solubility in the supporting electrolyte. The solvation chemistry of the modified ferrocene compound. Electrochemical cycling testing in a hybrid lithiumorganic redox flow battery using the as-synthesized ionic-derivatized ferrocene as the catholyte active material demonstrates that the incorporation of the ionic-charged pendant significantly improves the system energy density. When coupled with a lithium-graphite hybrid anode, the hybrid flow battery exhibits a cell voltage of 3.49 V, energy density about 50 Wh L-1, and energy efficiency over 75%. These results reveal a generic design route towards high performance nonaqueous electrolyte by rational functionalization of the organic redox species with selective ligand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据