4.8 Article

A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for High-Performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 Cathode Materials

期刊

ADVANCED ENERGY MATERIALS
卷 4, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201400631

关键词

-

资金

  1. IT R&D program of MOTIE/KEIT [10046309]
  2. Korea Evaluation Institute of Industrial Technology (KEIT) [10046306, 10046309] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The Li-rich cathode materials have been considered as one of the most promising cathodes for high energy Li-ion batteries. However, realization of these materials for use in Li-ion batteries is currently limited by their intrinsic problems. To overcome this barrier, a new surface treatment concept is proposed in which a hybrid surface layer composed of a reduced graphene oxide (rGO) coating and a chemically activated layer is created. A few layers of GO are first coated on the surface of the Li-rich cathode material, followed by a hydrazine treatment to produce the reducing agent of GO and the chemical activator of the Li2MnO3 phase. Compared to previous studies, this surface treatment provides substantially improved electrochemical performance in terms of initial Coulombic effiency and retention of discharge voltage. As a result, the surface-treated 0.4Li(2)MnO(3-)0.6LiNi(1/3)Co(1/3)Mn(1/3)O(2) exhibits a high capacity efficiency of 99.5% during the first cycle a the discharge capacity of 250 mAh g(-1) (2.0-4.6 V under 0.1C), 94.6% discharge voltage retention during 100 cycles (1C) and the superior capacity retention of 60% at 12C at 24 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据