4.8 Article

Darwin at High Temperature: Advancing Solar Cell Material Design Using Defect Kinetics Simulations and Evolutionary Optimization

期刊

ADVANCED ENERGY MATERIALS
卷 4, 期 13, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201400459

关键词

process simulations; manufacturing optimization; photovoltaic devices; genetic algorithms; defects

资金

  1. National Science Foundation (NSF)
  2. Department of Energy (DOE) under NSF CA [EEC-1041895]
  3. Alexander von Humboldt Foundation
  4. Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program
  5. National Science Foundation under NSF [ECS-0335765]
  6. German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
  7. industry partners within the research cluster SolarWinS [0325270F]

向作者/读者索取更多资源

Material defects govern the performance of a wide range of energy conversion and storage devices, including photovoltaics, thermoelectrics, and batteries. The success of large-scale, cost-effective manufacturing hinges upon rigorous material optimization to mitigate deleterious defects. Material processing simulations have the potential to accelerate novel energy technology development by modeling defect-evolution thermodynamics and kinetics during processing of raw materials into devices. Here, a predictive process optimization framework is presented for rapid material and process development. A solar cell simulation tool that models defect kinetics during processing is coupled with a genetic algorithm to optimize processing conditions in silico. Experimental samples processed according to conditions suggested by the optimization show significant improvements in material performance, indicated by minority carrier lifetime gains, and confirm the simulated directions for process improvement. This material optimization framework demonstrates the potential for process simulation to leverage fundamental defect characterization and high-throughput computing to accelerate the pace of learning in materials processing for energy applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据