4.8 Article

Synthesis and Characterization of Lithium Bis( fluoromalonato) borate for Lithium-Ion Battery Applications

期刊

ADVANCED ENERGY MATERIALS
卷 4, 期 6, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201301368

关键词

-

资金

  1. U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering
  2. U.S. Department of Energy's Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences

向作者/读者索取更多资源

A new orthochelated salt, lithium bis(monofluoromalonato)borate (LiBFMB), is synthesized and purified for application in lithium-ion batteries. The presence of fluorine in the borate anion of LiBFMB increases its oxidation potential and also facilitates ion dissociation, as reflected by the ratio of ionic conductivity (sigma(exp)) and ion diffusivity coefficients (sigma(NMR)). Half-cell tests using 5.0 V lithium nickel manganese oxide (LiNi0.5Mn1.5O4) as a cathode and ethylene carbonate (EC)/dimethyl carbonate (DMC)/diethyl carbonate (DEC)as a solvent reveals that the impedance of the LiBFMB cell is much larger than those of LiPF6- and lithium bis(oxalato)borate (LiBOB)-based cells, which results in lower capacity and poor cycling performance of the former. X-ray photoelectron spectroscopy (XPS) results for the cycled cathode electrode suggest that because of the stability of the LiBFMB salt, the solid electrolyte interphase (SEI) formed on the cathode surface is significantly different from those of LiPF6 and LiBOB based electrolytes, resulting in more solvent decomposition and a thicker SEI layer. Initial results also indicate that using a high dielectric constant solvent, propylene carbonate, alters the surface chemistry, reduces the interfacial impedance, and enhances the performance of LiBFMB-based 5.0 V cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据