4.8 Article

Size-Dependent Charge Transfer in Blends of PbS Quantum Dots with a Low-Gap Silicon-Bridged Copolymer

期刊

ADVANCED ENERGY MATERIALS
卷 3, 期 11, 页码 1490-1499

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201300317

关键词

-

资金

  1. Cyprus Research Promotion Foundation under the Molecular Electronics and Photonics Research Unit [NEA YPiODeltaOMH/SigmaTPATH/0308/06]
  2. Cyprus Research Promotion Foundation [ANABAThetaMISigmaH/0609/15]
  3. Austrian Science Fund FWF
  4. Austrian Science Fund (FWF) [F 2505] Funding Source: researchfish

向作者/读者索取更多资源

The photophysics of bulk heterojunctions of a high-performance, low-gap silicon-bridged dithiophene polymer with oleic acid capped PbS quantum dots (QDs) are studied to assess the material potential for light harvesting in the visible-and IR-light ranges. By employing a wide range of nanocrystal sizes, systematic dependences of electron and hole transfer on quantum-dot size are established for the first time on a low-gap polymer-dot system. The studied system exhibits type II band offsets for dot sizes up to ca. 4 nm, whch allow fast hole transfer from the quantum dots to the polymer that competes favorably with the intrinsic QD recombination. Electron transfer from the polymer is also observed although it is less competitive with the fast polymer exciton recombination for most QD sizes studied. The incorporation of a fullerene derivative provides efficient electron-quenching sites that improve interfacial polymer-exciton dissociation in ternary polymer-fullerene-QD blends. The study indicates that programmable band offsets that allow both electron and hole extraction can be produced for efficient light harvesting based on this low-gap polymer-PbS QD composite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据