4.8 Article

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials

期刊

ADVANCED ENERGY MATERIALS
卷 4, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201300950

关键词

lithium-ion batteries; Li-rich materials; layered materials; cathodes; rate performance; kinetics

资金

  1. U.S. Department of Energy
  2. Assistant Secretary for Energy Efficiency and Renewable Energy
  3. Office of Vehicle Technologies [DE-AC02-98CH10886, DE-AC02-06CH11357]
  4. CAS Innovation project [KJCX2-YW-W26]
  5. 973 project [2012CB932900]

向作者/读者索取更多资源

The high-energy-density, Li-rich layered materials, i.e., xLiMO(2)(1-x)Li2MnO3, are promising candidate cathode materials for electric energy storage in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). The relatively low rate capability is one of the major problems that need to be resolved for these materials. To gain insight into the key factors that limit the rate capability, in situ X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) studies of the cathode material, Li1.2Ni0.15Co0.1Mn0.55O2 [0.5Li(Ni0.375Co0.25 Mn-0.375)O(2)0.5Li(2)MnO(3)], are carried out. The partial capacity contributed by different structural components and transition metal elements is elucidated and correlated with local structure changes. The characteristic reaction kinetics for each element are identified using a novel time-resolved XAS technique. Direct experimental evidence is obtained showing that Mn sites have much poorer reaction kinetics both before and after the initial activation of Li2MnO3, compared to Ni and Co. These results indicate that Li2MnO3 may be the key component that limits the rate capability of Li-rich layered materials and provide guidance for designing Li-rich layered materials with the desired balance of energy density and rate capability for different applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据