4.8 Article

Synthesis of High Aspect Ratio BaTiO3 Nanowires for High Energy Density Nanocomposite Capacitors

期刊

ADVANCED ENERGY MATERIALS
卷 3, 期 4, 页码 451-456

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201200808

关键词

energy storage; nanocomposite; nanowire; capacitor; BaTiO3

资金

  1. National Science Foundation [CMMI-0826159]

向作者/读者索取更多资源

High energy density capacitors are critically important in advanced electronic devices and power systems since they can reduce the weight, size and cost required to meet a desired application. Nanocomposites hold strong potential for increasing the performance of high power energy sources; however, the energy density of most nanocomposites is still low compared to commercial capacitors and neat polymers. Here, we develop a new synthesis method for the growth of high aspect ratio barium titanate nanowires (BaTiO3) nanowires (NWs) with high yield. High energy density nanocomposite capacitors are fabricated using surface-functionalized high aspect ratio BaTiO3 NWs in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) matrix. At a 17.5% volume fraction, the nanocomposites show more than 45.3% increase in energy density above that of the pure P(VDF-TrFE-CFE) polymer (10.48 J/cc compared to 7.21 J/cc) at electric field 300 MV/m. This value is significant and exceeds those reported for the conventional polymer-ceramic nanocomposites; it is also more than seven times larger than high performance commercial polypropylene capacitor (1.2 J/cc at 640 MV/m). In addition, our nanocomposite capacitor has a maximum power density as high as 1.2 MW/cc occurring only 1.52 s after the start of discharge. The findings of this research could lead to enhanced interest in nanowires based nanocomposites due to their potential for achieving next generation energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据