4.0 Article

High-Throughput Bubble Screening Method for Combinatorial Discovery of Electrocatalysts for Water Splitting

期刊

ACS COMBINATORIAL SCIENCE
卷 16, 期 2, 页码 47-52

出版社

AMER CHEMICAL SOC
DOI: 10.1021/co400151h

关键词

high-throughput screening; electrocatalyst; water-splitting; oxygen evolution reaction; inkjet printing

资金

  1. Office of Science of the U.S. Department of Energy [DE-SC000499]

向作者/读者索取更多资源

Combinatorial synthesis and screening for discovery of electrocatalysts has received increasing attention, particularly for energy-related technologies. High-throughput discovery strategies typically employ a fast, reliable initial screening technique that is able to identify active catalyst composition regions. Traditional electrochemical characterization via current-voltage measurements is inherently throughput-limited, as such measurements are most readily performed by serial screening. Parallel screening methods can yield much higher throughput and generally require the use of an indirect measurement of catalytic activity. In a water-splitting reaction, the change of local pH or the presence of oxygen and hydrogen in the solution can be utilized for parallel screening of active electrocatalysts. Previously reported techniques for measuring these signals typically function in a narrow pH range and are not suitable for both strong acidic and basic environments. A simple approach to screen the electrocatalytic activities by imaging the oxygen and hydrogen bubbles produced by the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is reported here. A custom built electrochemical cell was employed to record the bubble evolution during the screening, where the testing materials were subject to desired electrochemical potentials. The transient of the bubble intensity obtained from the screening was quantitatively analyzed to yield a bubble figure of merit (FOM) that represents the reaction rate. Active catalysts in a pseudoternary material library, (Ni-Fe-Co)O-x, which contains 231 unique compositions, were identified in less than one minute using the bubble screening method. An independent, serial screening method on the same material library exhibited excellent agreement with the parallel bubble screening. This general approach is highly parallel and is independent of solution pH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据