4.8 Article

Propylphenol to Phenol and Propylene over Acidic Zeolites: Role of Shape Selectivity and Presence of Steam

期刊

ACS CATALYSIS
卷 8, 期 9, 页码 7861-7878

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b01564

关键词

catalysis; lignin valorization; ZSM-5; dealkylation; propylphenol and phenol; shape selectivity

资金

  1. China Scholarship Council (CSC) [201404910467]
  2. Research Foundation Flanders (FWO)

向作者/读者索取更多资源

This contribution studies the steam-assisted dealkylation of 4-npropylphenol (4-n-PP), one of the major products derived from lignin, into phenol and propylene over several micro- and mesoporous acidic aluminosilicates in gas phase. A series of acidic zeolites with different topology (e.g., FER, TON, MFI, BEA, and FAU) are studied, of which ZSM-5 outperforms the others. The catalytic results, including zeolite topology and water stability effects, are rationalized in terms of thermodynamics and kinetics. A reaction mechanism is proposed by (i) analyzing products distribution under varying temperature and contact time conditions, (ii) investigating the dealkylation of different regio- and geometric isomers of propylphenol, and (iii) studying the reverse alkylation of phenol and propylene. The mechanism accords to the classic carbenium chemistry including isomerization, disproportionation, transalkylation, and dealkylation, as the most important reactions. The exceptional selectivity of ZSM-5 is attributed to a pore confinement, avoiding disproportionation/transalkylation as a result of a transition state shape selectivity. The presence of water maintains a surprisingly stable catalysis, especially for ZSM-5 with low acid density. The working hypothesis of this stabilization is that water precludes diphenyl ether(s) formation in the pores by reducing the lifetime of the phenolics at the active site due to the high heat of adsorption of water on H-ZSM-5, besides counteracting the equilibrium of the phenolics condensation reaction. The water effect is unique for the combination of (alkyl)phenols and ZSM-5.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据