4.8 Article

Design and Analysis of Enhanced Catalysis in Scaffolded Multienzyme Cascade Reactions

期刊

ACS CATALYSIS
卷 4, 期 2, 页码 505-511

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cs401009z

关键词

multienzyme; cascade; enzyme scaffold; substrate channeling; enzyme kinetics; DNA nanostructures; protein engineering

资金

  1. Air Force Office of Scientific Research Young Investigator Program [FA9550-13-1-0184]
  2. Bourns College of Engineering at the University of California, Riverside

向作者/读者索取更多资源

New developments in nucleic acid nanotechnology and protein scaffold designs have enabled unparalleled control over the spatial organization of synthetic multienzyme cascade reactions. One of the goals of these new technologies is to create nanostructured enzyme cascade reactions that promote substrate channeling along the cascade and, in doing so, enhance cascade catalysis. The concept of substrate channeling has a long and rich history in biochemistry and has established methods of evaluation and quantification. In this Perspective, we review the most common of these methods and discuss them in the context of engineered multienzyme systems and natural bifunctional enzymes with known mechanisms of substrate channeling. In addition, we use experimental data and the results of simulations of coupled-enzyme reactions to develop a set of preliminary design rules for engineering multienzyme nanostructures. The design rules address the limitations on interenzyme distance and active site orientation in substrate channeling and suggest designs for promoting enhanced catalysis, specifically, that enzyme orientation should minimize interenzyme distance and that at distances greater than 1 nm between active sites, significant channeling occurs only if diffusion of the intermediate is bounded through interactions with the surface or scaffold between active sites. This field is rapidly developing and promises to create many more new and exciting technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据