4.8 Article

Geometrically Controlled Nanoporous PdAu Bimetallic Catalysts with Tunable Pd/Au Ratio for Direct Ethanol Fuel Cells

期刊

ACS CATALYSIS
卷 3, 期 6, 页码 1220-1230

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cs400135k

关键词

nanoporous alloy; dealloying; bimetallic catalysis; direct ethanol fuel cell; surface electronic structure; Pd-Au catalyst

资金

  1. JST-CREST Phase Interface Science for Highly Efficient Energy Utilization, JST, Japan
  2. World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials, MEXT, Japan

向作者/读者索取更多资源

We report nanoporous Pd100-xAux (x = 0, 25, 50, 75, 100; np-PdAu) bimetallic catalysts fabricated by electrochemically dealloying isomorphous Pd20-yAuyNi80 = 0, 5, 15, 20) precursors. The chemical composition of the nanoporous bimetallic catalysts can be precisely controlled by predesigning Pd/Au ratios in the ternary alloys. Dealloying at an appropriate potential for each alloy can selectively leach Ni away while the Pd and Au remain intact to form a geometrically controllable nanoporous structure. The electrocatalysis of the np-PdAu shows evident dependence on the Au/Pd atomic ratio, and the np-Pd75Au25 bimetallic catalyst shows superior electrocatalytic performance toward ethanol electrooxidation in comparison with commercial Pt/C, np-Pd, and other np-PdAu alloys. Since there are no obvious geometric shape and pore size disparities among the np-PdAu samples, the dealloyed catalysts also provide an ideal system to explore the chemical origins of the excellent catalytic properties of bimetallic catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据