4.8 Article

Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

期刊

ACS CATALYSIS
卷 2, 期 6, 页码 1127-1137

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cs200695t

关键词

noble metal catalyst; sulfur poisoning; carbon deposition; hydrocarbon reforming; deactivation; hydrogen; XANES

资金

  1. U.S. Department of Energy National Energy Technology Laboratory [DE-NT0004396]
  2. U.S. Office of Naval Research through ONR NAVSEA [N00014-06-1-0320]
  3. Office of Basic Energy Sciences of the U.S. Department of Energy
  4. National Science Foundation Division of Materials Research
  5. Office of Basic Energy Sciences of the U.S. Department of Energy [W-31-109-Eng-38]

向作者/读者索取更多资源

This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalysts supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 degrees C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. Transmission electron microscopy (TEM) results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by X-ray photoelectron spectroscopy (XPS), the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which may be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh S interaction. Because of its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with that for the Rh/Al2O3, Rh/MgO, Rh/SiO2, and Pt/Al2O3 catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据