4.8 Article

Anomalous twin boundaries in two dimensional materials

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-06074-8

关键词

-

资金

  1. U.K. Engineering and Physical Sciences Research Council (EPSRC) [EP/K016946/1, EP/P009050/1, EP/M010619/1]
  2. U.S. Defense Threat Reduction Agency [HDTRA1-12-1-0013]
  3. EPSRC NowNano EPSRC doctoral training centre
  4. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme [ERC-2016-STG-EvoluTEM- 715502]
  5. Institute for Basic Science of South Korea [IBS-R019-D1]
  6. EPSRC [EP/K005014/1, EP/P025021/1] Funding Source: UKRI

向作者/读者索取更多资源

Twin boundary defects form in virtually all crystalline materials as part of their response to applied deformation or thermal stress. For nearly six decades, graphite has been used as a textbook example of twinning with illustrations showing atomically sharp interfaces between parent and twin. Using state-of-the-art high-resolution annular dark-field scanning transmission electron microscopy, we have captured atomic resolution images of graphitic twin boundaries and find that these interfaces are far more complex than previously supposed. Density functional theory calculations confirm that the presence of van der Waals bonding eliminates the requirement for an atomically sharp interface, resulting in long-range bending across multiple unit cells. We show these remarkable structures are common to other van der Waals materials, leading to extraordinary microstructures, Raman-active stacking faults, and sub-surface exfoliation within bulk crystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据