4.8 Article

Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-05580-z

关键词

-

资金

  1. National Natural Science Foundation of China [51402100, 21573066]
  2. Provincial Natural Science Foundation of Hunan [2016JJ1006, 2016TP1009]
  3. Shanghai Sailing Program [17YF1429800]
  4. Australian Research Council [DP180100568]

向作者/读者索取更多资源

The trade-offs between photoelectrode efficiency and stability significantly hinder the practical application of silicon-based photoelectrochemical devices. Here, we report a facile approach to decouple the trade-offs of silicon-based photocathodes by employing crystalline TiO2 with graded oxygen defects as protection layer. The crystalline protection layer provides high-density structure and enhances stability, and at the same time oxygen defects allow the carrier transport with low resistance as required for high efficiency. The silicon-based photocathode with black TiO2 shows a limiting current density of similar to 35.3 mA cm(-2) and durability of over 100 h at 10 mA cm(-2) in 1.0 M NaOH electrolyte, while none of photoelectrochemical behavior is observed in crystalline TiO2 protection layer. These findings have significant suggestions for further development of silicon-based, III-V compounds and other photo-electrodes and offer the possibility for achieving highly efficient and durable photoelectrochemical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据