4.8 Article

Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide

期刊

NATURE COMMUNICATIONS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms4246

关键词

-

资金

  1. European Commission
  2. Faculty of Science at the University of Sydney
  3. Australian Research Council (ARC) through the Centre of Excellence (CUDOS)
  4. Discovery project [DP110100003]
  5. DECRA programs [DE120100226, DE120101329, DE130101148]
  6. NKBRSF [G2010CB923200]
  7. NNSFC [11204386]
  8. GNSF [S2012040007812]
  9. EPSRC [EP/F001622/1] Funding Source: UKRI
  10. Engineering and Physical Sciences Research Council [EP/F001622/1] Funding Source: researchfish

向作者/读者索取更多资源

The ability to use coherent light for material science and applications is linked to our ability to measure short optical pulses. While free-space optical methods are well established, achieving this on a chip would offer the greatest benefit in footprint, performance and cost, and allow the integration with complementary signal-processing devices. A key goal is to achieve operation at sub-watt peak power levels and on sub-picosecond timescales. Previous integrated demonstrations require either a temporally synchronized reference pulse, an off-chip spectrometer or long tunable delay lines. Here we report a device capable of achieving single-shot time-domain measurements of near-infrared picosecond pulses based on an ultra-compact integrated CMOS-compatible device, which could operate without any external instrumentation. It relies on optical third-harmonic generation in a slow-light silicon waveguide. Our method can also serve as an in situ diagnostic tool to map, at visible wavelengths, the propagation dynamics of near-infrared pulses in photonic crystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据