4.8 Article

DNA-based digital tension probes reveal integrin forces during early cell adhesion

期刊

NATURE COMMUNICATIONS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms6167

关键词

-

资金

  1. NIH [R01-GM097399]
  2. Alfred P. Sloan Research Fellowship
  3. Camille-Dreyfus Teacher-Scholar Award
  4. NSF [1350829]
  5. Direct For Biological Sciences
  6. Div Of Molecular and Cellular Bioscience [1350829] Funding Source: National Science Foundation

向作者/读者索取更多资源

Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure because of a lack of methods for molecular force imaging. Here to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20- to 30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA hairpins with tunable force response thresholds, ligands and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized RGD over linear RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial resolution limitations of traction force microscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据