4.8 Article

Non-canonical function of spindle assembly checkpoint proteins after APC activation reduces aneuploidy in mouse oocytes

期刊

NATURE COMMUNICATIONS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms4444

关键词

-

资金

  1. Australian Research Council [DP110100418, DP1201000946]

向作者/读者索取更多资源

The spindle assembly checkpoint (SAC) prevents aneuploidy by coupling anaphase onset, through anaphase-promoting complex (APC) activation, with chromosome attachment to spindle microtubules. Here, we examine APC activity in oocytes, noted for their susceptibility to chromosome mis-segregation during the first meiotic division (MI). We find that MI oocytes only contain sub-maximal APC activity, measured through cyclin B1-GFP degradation, because inhibition of SAC proteins when the APC is normally fully active increases cyclin B1 degradation twofold and reduces the length of this division by 2 h. In addition, inhibiting the SAC component Mps1 only when the APC is already active increases aneuploidy rates in the resulting egg by up to 30%. We therefore establish that the activities of SAC proteins and the APC co-exist in oocytes, and such concurrence has a vital role in reducing aneuploidy rates by extending MI, probably by allowing time for numerous erroneous microtubule attachments to be corrected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据