4.8 Article

Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films

期刊

NATURE COMMUNICATIONS
卷 5, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/ncomms5163

关键词

-

资金

  1. ACS-PRF [51983-ND7]

向作者/读者索取更多资源

Thin polymer films are ubiquitous in manufacturing and medical applications, and there has been intense interest in how film thickness and substrate interactions influence film dynamics. It is appreciated that a polymer-air interfacial layer with enhanced mobility plays an important role in the observed changes and recent studies suggest that the length scale x of this interfacial layer is related to film relaxation. In the context of the Adam-Gibbs and random first-order transition models of glass formation, these results provide indirect evidence for a relation between xi and the scale of collective molecular motion. Here we report direct evidence for a proportionality between xi and the average length L of string-like particle displacements in simulations of polymer films supported on substrates with variable interaction strength and rigidity. This relation explicitly links xi to the theoretical scale of cooperatively rearranging regions, offering a promising route to experimentally determine this scale of cooperative motion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据