4.8 Article

Modulating the frequency and bias of stochastic switching to control phenotypic variation

期刊

NATURE COMMUNICATIONS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms5574

关键词

-

资金

  1. Chancellor's Faculty Partnership Fund

向作者/读者索取更多资源

Mechanisms that control cell-to-cell variation in gene expression ('phenotypic variation') can determine a population's growth rate, robustness, adaptability and capacity for complex behaviours. Here we describe a general strategy (termed FABMOS) for tuning the phenotypic variation and mean expression of cell populations by modulating the frequency and bias of stochastic transitions between 'OFF' and 'ON' expression states of a genetic switch. We validated the strategy experimentally using a synthetic fim switch in Escherichia coli. Modulating the frequency of switching can generate a bimodal (low frequency) or a unimodal (high frequency) population distribution with the same mean expression. Modulating the bias as well as the frequency of switching can generate a spectrum of bimodal and unimodal distributions with the same mean expression. This remarkable control over phenotypic variation, which cannot be easily achieved with standard gene regulatory mechanisms, has many potential applications for synthetic biology, engineered microbial ecosystems and experimental evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据