4.8 Article

InVERT molding for scalable control of tissue microarchitecture

期刊

NATURE COMMUNICATIONS
卷 4, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms2853

关键词

-

资金

  1. NIH [EB008396, DK56966]
  2. Cancer Center from the National Cancer Institute [P30-CA14051]
  3. NIH NRSA [1F32DK091007, 1F32DK095529, 5T32AR007132-35]
  4. NSF GRFP [1122374]
  5. A*STAR (Agency for Science, Technology and Research, Singapore) NSS
  6. McEwen Centre for Regenerative Medicine fellowship

向作者/读者索取更多资源

Complex tissues contain multiple cell types that are hierarchically organized within morphologically and functionally distinct compartments. Construction of engineered tissues with optimized tissue architecture has been limited by tissue fabrication techniques, which do not enable versatile microscale organization of multiple cell types in tissues of size adequate for physiological studies and tissue therapies. Here we present an 'Intaglio-Void/Embed-Relief Topographic molding' method for microscale organization of many cell types, including induced pluripotent stem cell-derived progeny, within a variety of synthetic and natural extracellular matrices and across tissues of sizes appropriate for in vitro, pre-clinical, and clinical studies. We demonstrate that compartmental placement of non-parenchymal cells relative to primary or induced pluripotent stem cell-derived hepatocytes, compartment microstructure, and cellular composition modulate hepatic functions. Configurations found to sustain physiological function in vitro also result in survival and function in mice for at least 4 weeks, demonstrating the importance of architectural optimization before implantation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据