4.8 Article

Modular optimization of multi-gene pathways for fatty acids production in E. coli

期刊

NATURE COMMUNICATIONS
卷 4, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms2425

关键词

-

资金

  1. Rensselaer Polytechnic Institute

向作者/读者索取更多资源

Microbial fatty acid-derived fuels have emerged as promising alternatives to petroleum-based transportation fuels. Here we report a modular engineering approach that systematically removed metabolic pathway bottlenecks and led to significant titre improvements in a multi-gene fatty acid metabolic pathway. On the basis of central pathway architecture, E. coli fatty acid biosynthesis was re-cast into three modules: the upstream acetyl coenzyme A formation module; the intermediary acetyl-CoA activation module; and the downstream fatty acid synthase module. Combinatorial optimization of transcriptional levels of these three modules led to the identification of conditions that balance the supply of acetyl-CoA and consumption of malonyl-CoA/ACP. Refining protein translation efficiency by customizing ribosome binding sites for both the upstream acetyl coenzyme A formation and fatty acid synthase modules enabled further production improvement. Fed-batch cultivation of the engineered strain resulted in a final fatty acid production of 8.6 g l(-1). The modular engineering strategies demonstrate a generalized approach to engineering cell factories for valuable metabolites production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据