4.8 Article

Dendritic spine formation and synaptic function require neurobeachin

期刊

NATURE COMMUNICATIONS
卷 2, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms1565

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [SFB 629-TP B11]

向作者/读者索取更多资源

A challenge in neuroscience is to understand the mechanisms underlying synapse formation. Most excitatory synapses in the brain are built on spines, which are actin-rich protrusions from dendrites. Spines are a major substrate of brain plasticity, and spine pathologies are observed in various mental illnesses. Here we investigate the role of neurobeachin (Nbea), a multidomain protein previously linked to cases of autism, in synaptogenesis. We show that deletion of Nbea leads to reduced numbers of spinous synapses in cultured neurons from complete knockouts and in cortical tissue from heterozygous mice, accompanied by altered miniature postsynaptic currents. In addition, excitatory synapses terminate mostly at dendritic shafts instead of spine heads in Nbea mutants, and actin becomes less enriched synaptically. As actin and synaptopodin, a spine-associated protein with actin-bundling activity, accumulate ectopically near the Golgi apparatus of mutant neurons, a role emerges for Nbea in trafficking important cargo to pre- and postsynaptic compartments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据