4.8 Article

Phonon-tunnelling dissipation in mechanical resonators

期刊

NATURE COMMUNICATIONS
卷 2, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms1212

关键词

-

资金

  1. European Commission (EC)
  2. European Research Council (ERC StG QOM)
  3. Nanosystems Initiative Munich
  4. Austrian Research Promotion Agency (FFG)
  5. FWF Doctoral Programme (CoQuS)
  6. Austrian Science Fund (FWF) [Y 414] Funding Source: researchfish
  7. Austrian Science Fund (FWF) [W1210] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据