4.8 Article

Electron-beam-assisted superplastic shaping of nanoscale amorphous silica

期刊

NATURE COMMUNICATIONS
卷 1, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms1021

关键词

-

资金

  1. National 973 Program of China [2009CB623700, 2010CB631003]
  2. 111 Project of China
  3. National Outstanding Young Investigator Grant of China [50925104, 10825419]
  4. C-NSF [50831001]
  5. NCET [05009015200701]
  6. Beijing Education Committee [JB102001200801]
  7. US-NSF-CMMI [0928517]
  8. US-DOE, BES-MSE [DE-FG02-09ER46056]

向作者/读者索取更多资源

Glasses are usually shaped through the viscous flow of a liquid before its solidification, as practiced in glass blowing. At or near room temperature (RT), oxide glasses are known to be brittle and fracture upon any mechanical deformation for shape change. Here, we show that with moderate exposure to a low-intensity (<1.8x10(-2) Acm(-2)) electron beam (e-beam), dramatic shape changes can be achieved for nanoscale amorphous silica, at low temperatures and strain rates >10(-4) per second. We show not only large homogeneous plastic strains in compression for nanoparticles but also superplastic elongations >200% in tension for nanowires (NWs). We also report the first quantitative comparison of the load-displacement responses without and with the e-beam, revealing dramatic difference in the flow stress (up to four times). This e-beam-assisted superplastic deformability near RT is useful for processing amorphous silica and other conventionally-brittle materials for their applications in nanotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据