4.4 Article

The unbearable uncertainty of Bayesian divergence time estimation

期刊

JOURNAL OF SYSTEMATICS AND EVOLUTION
卷 51, 期 1, 页码 30-43

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1759-6831.2012.00236.x

关键词

finite-sites theory; fossil calibration; infinite-sites plot; molecular clock

资金

  1. Biotechnological and Biological Sciences Research Council (BBSRC)
  2. Royal Society

向作者/读者索取更多资源

Divergence time estimation using molecular sequence data relying on uncertain fossil calibrations is an unconventional statistical estimation problem. As the sequence data provide information about the distances only, estimation of absolute times and rates has to rely on information in the prior, so that the model is only semi-identifiable. In this paper, we use a combination of mathematical analysis, computer simulation, and real data analysis to examine the uncertainty in posterior time estimates when the amount of sequence data increases. The analysis extends the infinite-sites theory of Yang and Rannala, which predicts the posterior distribution of divergence times and rate when the amount of data approaches infinity. We found that the posterior credibility interval in general decreases and reaches a non-zero limit when the data size increases. However, for the node with the most precise fossil calibration (as measured by the interval width divided by the mid value), sequence data do not really make the time estimate any more precise. We propose a finite-sites theory which predicts that the square of the posterior interval width approaches its infinite-data limit at the rate 1/n, where n is the sequence length. We suggest a procedure to partition the uncertainty of posterior time estimates into that due to uncertainties in fossil calibrations and that due to sampling errors in the sequence data. We evaluate the impact of conflicting fossil calibrations on posterior time estimation and point out that narrow credibility intervals or overly precise time estimates can be produced by conflicting or erroneous fossil calibrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据