4.4 Article

Resveratrol analogue HS-1793 induces the modulation of tumor-derived T cells

期刊

EXPERIMENTAL AND THERAPEUTIC MEDICINE
卷 3, 期 4, 页码 592-598

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/etm.2012.472

关键词

resveratrol analogue; HS-1793; regulatory T cell; FoxP3; interferon-gamma

资金

  1. Dong Nam Institute of Radiological and Medical Sciences [50593-2011]
  2. Ministry of Education, Science and Technology
  3. Ministry of Health and Welfare, Republic of Korea [A090314]
  4. Korea Health Promotion Institute [A090314] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Recent advances in the understanding of the mechanisms responsible for tumor progression suggest the possibility to control cancer growth, not only through chemotherapy-induced cancer cell destruction, but also by stimulating anticancer immunity. However, immune tolerance against tumor antigens disturbs diverse forms of immunotherapy. One of the most potent and well-studied tumor-induced immunosuppressive phenotypes found in the tumor microenvironment is the regulatory subpopulation cells (CD4(+)CD25(+)FoxP3(+)Treg cells). Among the great number of natural agents derived from plants and potentially useful for application in the complementary therapy of cancer, resveratrol is gaining attention for its immunomodulating properties in breast cancer, since the ineffectiveness of numerous immunotherapy strategies may be related, in part, to their negative effects on Treg cells. The present study was undertaken to examine whether HS-1793, a synthetic resveratrol analogue free from the restriction of the metabolic instability and high dose requirement of resveratrol, shows a direct effect on immune responses by enhancing lymphocyte proliferation or an immunomodulatory effect by inducing changes in the Treg cell population in FM3A breast tumor-bearing mice. Although HS-1793 had no direct immunostimulatory effect, it dose-dependently decreased IL-2 secretion and increased IL-4 secretion of concanavalin A-stimulated lymphocytes from tumor-bearing mice, which suggest that HS-1793 may induce changes in the subpopulations of tumor-derived T lymphocytes. The CD4(+)CD25(+) cell population from tumor-bearing mice decreased after HS-1793 treatment in a dose-dependent manner, while the CD4(+) T cell population remained unchanged. FoxP3(+)-expressing cells among the CD4(+)CD25(+) population showed a similar pattern. In contrast, the CD8(+) T cell population as well as the interferon (IFN)-gamma-expressing CD8(+) T cell population and IFN-gamma secretion of splenocytes from tumor-bearing mice were significantly upregulated by HS-1793 treatment. These results suggest that HS-1793 induces the modulation of tumor-derived T lymphocytes, particulary having a suppressive effect on the Treg cell population, likely contributing to enhanced tumor-specific cytotoxic T lymphocyte responses and CD4(+) T cells involving antitumor immunity. Therefore, HS-1793 may serve as a promising adjuvant therapeutic reagent in breast cancer immunotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据