4.3 Article

Friction Stir Processing for Enhancement of Wear Resistance of ZM21 Magnesium Alloy

期刊

出版社

SPRINGER INDIA
DOI: 10.1007/s12666-012-0163-4

关键词

Friction stir processing; Magnesium alloy; Surface composites; Hardness; Wear; Friction coefficient

资金

  1. Defence Research Development Organization (DRDO)

向作者/读者索取更多资源

Present work pertains to surface modification of the magnesium alloy using friction stir processing (FSP). Silicon carbide and boron carbide powders are used in the friction stir processing of the ZM21 Magnesium alloy. Coating was formed by FSP of the alloy by placing the carbide powders into the holes made on the surface. Surface coating was characterized by metallography, hardness and pin-on-disc testing. Friction stir processed coating exhibited excellent wear resistance and is attributed to grain boundary pinning and dispersion hardening caused by carbide particles. Surface composite coating with boron carbide was found to possess better wear resistance than coating made with silicon carbide. This may be attributed to formation of very hard layer coating of boron carbide reinforced composite on the surface of magnesium alloy. In the present work an attempt has also been made to compare the wear behaviour of surface composite layer on ZM21 Mg alloy with that of conventionally used engineering materials such as mild steel and austenitic stainless steel. Wear data clearly shows that wear resistance of friction stir processed composite layer is better than that of mild steel and stainless steel. This work demonstrates that friction stir processing is an effective strategy for enhancement of wear resistance of magnesium alloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据