4.7 Article

CPEB1 mediates hepatocellular carcinoma cancer stemness and chemoresistance

期刊

CELL DEATH & DISEASE
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41419-018-0974-2

关键词

-

资金

  1. National Natural Science Foundation of China [81573657]
  2. Natural Science Funding of Zhejiang Province [LQ16H160019]
  3. Zhejiang Province Medical and Health Care Key Project [2016146810]
  4. Chinese Medicine Science and Technology Projects of Zhejiang Province [2015ZA228, 2016ZA209]
  5. Experimental Animal Science and Technology Projects of Zhejiang Province [2017C37178, 2016C37101]
  6. High-Level Talent Project of Lishui City [2014RC01]
  7. Science and Technology Department of Lishui City [2017ZDXK07]

向作者/读者索取更多资源

Cancer stem cells (CSCs) are a subpopulation of cells within tumors that are believed to possess pluripotent properties and thought to be responsible for tumor initiation, progression, relapse and metastasis. Cytoplasmic polyadenylation element-binding protein 1 (CPEB1), a sequence-specific RNA-binding protein that regulates mRNA polyadenylation and translation, has been linked to cancer progression and metastasis. However, the involvement of CPEB1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we have demonstrated that CPEB1 directly regulates sirtuin 1 (SIRT1) mRNA to mediate cancer stemness in HCC. Cancer stemness was analyzed by self-renewal ability, chemoresistance, metastasis, expression of stemness-related genes and CSC marker-positive cell populations. The results indicate that CPEB1 is downregulated in HCC. Overexpression of CPEB1 dramatically reduced HCC cell stemness, whereas silencing CPEB1 enhances it. Using site-directed mutagenesis, a luciferase reporter assay, and immunoprecipitation, we found that CPEB1 could directly target the 3'-UTR of SIRT1, control poly(A) tail length and suppress its translation to mediate cancer stemness in vitro and in vivo. Overall, our findings suggest that the negative regulation between CPEB1 and SIRT1 contributes to the suppression of cancer stemness in HCC. CPEB1 may have potential as a therapeutic target in HCC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据