4.7 Article

SBF-1 exerts strong anticervical cancer effect through inducing endoplasmic reticulum stress-associated cell death via targeting sarco/endoplasmic reticulum Ca2+-ATPase 2

期刊

CELL DEATH & DISEASE
卷 5, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/cddis.2014.538

关键词

-

资金

  1. National Natural Science Foundation of China [81330079, 91229109, 81273528, 81422050]
  2. Jiangsu Province Clinical Science and Technology Project (Clinical Research Center) [BL2012008]
  3. National Science and Technology Major Project [2012ZX09304-001]

向作者/读者索取更多资源

Cervical cancer is one of the most common carcinomas in the genital system. In the present study, we report that SBF-1, a synthetic steroidal glycoside, has a strong antigrowth activity against human cervical cancer cells in vitro and in vivo. SBF-1 suppressed the growth, migration and colony formation of HeLa cells. In addition, severe endoplasmic reticulum (ER) stress was triggered by SBF-1, and 4-phenyl-butyric acid, a chemical chaperone, partially reversed SBF-1-induced cell death. To uncover the target protein of SBF-1, the compound was labeled with biotin. The biotin-labeled SBF-1 bound to sarco/ER Ca2+-ATPase 2 (SERCA2) and colocalized with SERCA2 in HeLa cells. Moreover, SBF-1 inhibited SERCA activity, depleted ER Ca2+ and increased cytosolic Ca2+ levels. 1,2-Bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a chelator of Ca2+, partially blocked SBF-1-induced ER stress and growth inhibition. Importantly, knockdown of SERCA2 increased the sensitivity of HeLa cells to SBF-1-induced ER stress and cell death, whereas overexpression of SERCA2 decreased this sensitivity. Furthermore, SBF-1 induced growth suppression and apoptosis in HeLa xenografts, which is closely related to the induction of ER stress and inhibition of SERCA activity. Finally, SERCA2 expression was elevated in human cervical cancer tissues (n = 299) and lymph node metastasis (n = 8), as compared with normal cervix tissues (n = 23), with a positive correlation with clinical stages. In all, these results suggest that SBF-1 disrupts Ca2+ homeostasis and causes ER stress-associated cell death through directly binding to SERCA2 and inhibiting SERCA activity. Our findings also indicate that SERCA2 is a potential therapeutic target for human cervical cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据