4.7 Article

Brimonidine prevents neurodegeneration in a mouse model of normal tension glaucoma

期刊

CELL DEATH & DISEASE
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2014.306

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Senju Pharmaceutical Co. Ltd
  3. Funding Program for Next Generation World-Leading Researchers (NEXT Program)

向作者/读者索取更多资源

Glaucoma is one of the leading causes of irreversible blindness that is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs, and the loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP). Brimonidine (BMD) is an alpha 2-adrenergic receptor agonist and it is commonly used in a form of eye drops to lower IOP in glaucoma patients. Recent studies have suggested that BMD has direct protective effects on RGCs involving IOP-independent mechanisms, but it is still controversial. In the present study, we examined the effects of BMD in EAAC1-deficient (KO) mice, an animal model of normal tension glaucoma. BMD caused a small decrease in IOP, but sequential in vivo retinal imaging and electrophysiological analysis revealed that treatment with BMD was highly effective for RGC protection in EAAC1 KO mice. BMD suppressed the phosphorylation of the N-methyl-D-aspartate receptor 2B (NR2B) subunit in RGCs in EAAC1 KO mice. Furthermore, in cultured Muller glia, BMD stimulated the production of several neurotrophic factors that enhance RGC survival. These results suggest that, in addition to lowering IOP, BMD prevents glaucomatous retinal degeneration by stimulating multiple pathways including glia-neuron interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据