4.7 Article

Lysine Trimethylation of EF-Tu Mimics Platelet-Activating Factor To Initiate Pseudomonas aeruginosa Pneumonia

期刊

MBIO
卷 4, 期 3, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.00207-13

关键词

-

资金

  1. Ministerio de Economia y Competitividad
  2. Spanish Network for the Research in Infectious Diseases [SAF2012-38426, REIPI C03/14, RD06/0008]
  3. Cystic Fibrosis Foundation [GOLDBE10G0]
  4. Instituto de Salud Carlos III

向作者/读者索取更多资源

Pseudomonas aeruginosa is a ubiquitous microorganism and the most common Gram-negative bacterium associated with nosocomial pneumonia, which is a leading cause of mortality among critically ill patients. Although many virulence factors have been identified in this pathogen, little is known about the bacterial components required to initiate infection in the host. Here, we identified a unique trimethyl lysine posttranslational modification of elongation factor Tu as a previously unrecognized bacterial ligand involved in early host colonization by P. aeruginosa. This modification is carried out by a novel methyltransferase, here named elongation factor Tu-modifying enzyme, resulting in a motif that is a structural mimic of the phosphorylcholine present in platelet-activating factor. This novel motif mediates bacterial attachment to airway respiratory cells through platelet-activating factor receptor and is a major virulence factor, expression of which is a prerequisite to pneumonia in a murine model of respiratory infection. IMPORTANCE Phosphorylcholine is an interesting molecule from the microbiological and immunological point of view. It is a crucial epitope for the virulence of many important human pathogens, modulates the host immune response, and is involved in a wide number of processes ranging from allergy to inflammation. Our current work identifies a novel bacterial surface epitope structurally and functionally similar to phosphorylcholine. This novel epitope is crucial for initial colonization of the respiratory tract by Pseudomonas aeruginosa and for development of pneumonia. This opens up new targets for the development of novel drugs to prevent P. aeruginosa pneumonia, which is particularly important given the frequent emergence of multidrug-resistant strains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据