4.4 Article

Dynamics of Stochastic Neuronal Networks and the Connections to Random Graph Theory

期刊

出版社

EDP SCIENCES S A
DOI: 10.1051/mmnp/20105202

关键词

neural network; neuronal network; synchrony; mean-field analysis; integrate-and-fire; random graphs; limit theorem

向作者/读者索取更多资源

We analyze a stochastic neuronal network model which corresponds to an all-to-all network of discretized integrate-and-fire neurons where the synapses are failure-prone. This network exhibits different phases of behavior corresponding to synchrony and asynchrony, and we show that this is due to the limiting mean-field system possessing multiple attractors. We also show that this mean-field limit exhibits a first-order phase transition as a function of the connection strength - as the synapses are made more reliable, there is a sudden onset of synchronous behavior. A detailed understanding of the dynamics involves both a characterization of the size of the giant component in a certain random graph process, and control of the pathwise dynamics of the system by obtaining exponential bounds for the probabilities of events far from the mean.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据