4.3 Article

A novel PSO-LSSVM model for predicting liquid rate of two phase flow through wellhead chokes

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jngse.2015.03.013

关键词

Choke; LSSVM; PSO; Two-phase flow; Kernel function

向作者/读者索取更多资源

Two-phase flow through chokes is common in oil industry. Wellhead chokes regulate and stabilize flow rate to prevent reservoir pressure declining, water coning and protecting downstream facilities against production flocculation. Choke liquid rate prediction is a basic requirement in production scheme and choke design. In this study, for the first time a least square support vector machine (LSSVM) model is developed for predicting liquid flow rate in two-phase flow through wellhead chokes. Particle swarm optimization (PSO) is applied to optimize tuning parameters of ISSVM model. Model inputs include choke upstream pressure, gas liquid ratio (GLR) and choke size which are surface measurable variables. Calculated flow rates from PSO-LSSVM model are excellently consistent with actual measured rates. Moreover, comparison between this model and related empirical correlations show accuracy and superiority of the model. Results of this work indicate PSO-LSSVM model is a powerful technique for predicting liquid rate of chokes in oil industry. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据